The Human Proteome Project: Chromosome 6, a Canadian Partnership

January 2011
Chromosome 6: overview

Structure and organization
- Structure and overview
- Protein coding and regulatory genes

Role in human diseases
- Chromosomal abnormalities
- Sequence variations
- Alteration in gene expression

Teams and technologies
- Genomics and proteomics teams
- Disease and mechanism-oriented teams
- Implications for health care transition
Chromosome 6: structure & organization

Overview

- The seventh of the 24 human chromosomes to be completed - joining chromosomes 7, 14, 20, 21, 22 and Y. Chromosome 6 is the largest to be fully analysed to date.

- Gene density is 9.2 genes per Mb, similar to Ch 7, 14, 20 and 22. MHC 43 genes per Mb, high density, high polymorphism, high linkage disequilibrium

- 2.2% of sequence occupied by exons; mean 281 bp, maximum length 9,114 bp (ZNF451), maximum number 101 (BPAG1). Largest gene PARK2 (1.4 Mb, 12 exons, 6q24)

- Chromosome 6 includes more than 130 genes that cause, predispose to or protect against certain diseases, with implications for cancer, heart disease, immune and inflammatory disorders and mental health.
Chromosome 6: structure & organization

Gene content and type

<table>
<thead>
<tr>
<th>Category</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length</td>
<td>170,899,992 bps</td>
</tr>
<tr>
<td>Protein Coding Genes</td>
<td>1132</td>
</tr>
<tr>
<td>miRNA Genes</td>
<td>17</td>
</tr>
<tr>
<td>miRNA Pseudo Genes</td>
<td>4</td>
</tr>
<tr>
<td>Mouse miRNA Pseudo Genes</td>
<td>1</td>
</tr>
<tr>
<td>snoRNA Genes</td>
<td>25</td>
</tr>
<tr>
<td>snoRNA Pseudo Genes</td>
<td>10</td>
</tr>
<tr>
<td>snRNA Genes</td>
<td>25</td>
</tr>
<tr>
<td>snRNA Pseudo Genes</td>
<td>42</td>
</tr>
<tr>
<td>scRNA Pseudo Genes</td>
<td>35</td>
</tr>
<tr>
<td>rRNA Genes</td>
<td>16</td>
</tr>
<tr>
<td>rRNA Pseudo Genes</td>
<td>29</td>
</tr>
<tr>
<td>tRNA Genes</td>
<td>19</td>
</tr>
<tr>
<td>tRNA Pseudo Genes</td>
<td>22</td>
</tr>
<tr>
<td>miscRNA Genes</td>
<td>56</td>
</tr>
<tr>
<td>miscRNA Pseudo Genes</td>
<td>41</td>
</tr>
<tr>
<td>Pseudo Genes</td>
<td>81</td>
</tr>
<tr>
<td>Pseudo Genes</td>
<td>82</td>
</tr>
</tbody>
</table>

[Image of bar chart and legend](#)
Chromosome 6: extracellular proteins

Extracellular proteins involved in immunity and inflammation

- Tumor necrosis factor α
- Lymphotoxin A&B
- 4 Lymphocyte antigens
- 4 complement factors
- 5 Defensins
- 3 Vanins
- Interleukin 17A and 17F
- Serum response factor
- Apolipoproteins A and M
- Vascular endothelial growth factor α
- Connective tissue growth factor
- 3 Serpin proteins
- Endothelin 1
- 6 Collagens
- 2 Laminins
Chromosome 6: membrane proteins

Brain related
- Cannabinoid receptor
- Opioid receptor mu 1
- 3 GABA receptors
- 2 serotonin receptors (1B & 1E)
- 3 glutamate receptors
- Schizophrenia disorder 3

Non-brain related
- 2 interleukin receptors
- Interferon gamma receptor
- 4+ psoriasis susceptibility genes
- Estrogen receptor (breast cancer)
- 9 G-protein coupled receptors
- 15 olfactory receptors
- 9 transmembrane proteins
- 15 solute carrier family members
Transcription factors and other proteins

- 26+ zinc finger proteins
- 7 transcription factors
- 3 PHD finger proteins Fyn and Fyn-related kinase
- Ezrin
- Flotillin
- 4 Gap junction proteins
- 2 Natural cytotoxicity triggering receptors
- 3 BCL-associated proteins
- Hemochromatosis gene
- Parkin 2 (juvenile Parkinson)
- Abelson helper integration site (schizophrenia, autism)
- 37 “similar to” proteins
- 60 open reading frames
Common translocations: genes and proteins re-arranged

- t(6;9)(p23;q34): DEK and CAN; AML (1%), myelodysplastic syndrome (rare)
- t(6;9)(q21-25;p13-24): adenoid cystic carcinoma
- t(6;11)(p21;q12-13); TFEB and Alpha; renal neoplasm of children and young adults
- t(6;12)(q23;q15): ? and HMGA2/HMGIC; hyaline vascular Castleman’s disease
- t(6;14)(p21.1;q32.3); cyclin D3 and IgH; gastrointestinal stromal tumors, multiple myeloma (4%), diffuse large B cell lymphoma
- t(6;14)(p25;q32): MUM/IRF4 and IgH; multiple myeloma (20%)
- 6p23: DEK; see t(6;9)(p23;q34)
- 6p21: pim-1
- 6p21: TFEB; see t(6;11)(p21;q12)
- 6p21.1: cyclin D3; seet(6;14)(p21.1;q32.3)
- 6p21.2: p21 WAF1/CIP1
- 6q22: ros
- 6q22-24: myb
- 6q24-27: mas
- 6p25: MUM/IRF4; see t(6;14)(p25;q32)
Chromosome 6: disease associations

Over 100 major disease associations recognized so far.

- 3-M syndrome
- 21-hydroxylase deficiency
- Acute promyelocytic leukemia
- **Alzheimer’s disease**
- age-related macular degeneration
- **ankylosing spondylitis**
- anterior segment dysgenesis
- arginase deficiency
- arrhythmogenic right ventricular cardiomyopathy
- autosomal recessive cerebellar ataxia type 1
- **autism**
- Axenfeld-Rieger syndrome
- **Behcet’s disease**
- bipolar disorder
- branchiooculofacial syndrome
- breast cancer
- bullus pemphigoid
- cbIf combined homocystinuria and methylmalonic aciduria
- Charcot-Marie-Tooth disease
- Char syndrome
- chordoma
- cleidocranial dysplasia
- **celiac disease**
- coenzyme Q10 deficiency
- collagenopathy (types II and XI)
- colon cancer
- **complement deficiency**
- cone dystrophy
- congenital muscular dystrophy
- Creutzfeld-Jacob disease
- 3/14/11
- 9
Chromosome 6: disease associations

Over 100 major disease associations recognized so far.

- craniometaphyseal dysplasia (AR type)
- **Crohn’s disease**
- D-2-hydroxy glutaric aciduria
- Dandy-Walker malformation
- **diabetes mellitus type 1**
- diabetic nephropathy
- dyslexia
- Ehlers-Danlos syndrome
- epilepsy
- factor XIII deficiency
- Fancony anemia
- gastric cancer
- Hashimoto thyroiditis
- head and neck cancer
- Hemochromatosis
- Huntington disease-like syndrome
- hypermethioninemia
- IgA nephropathy
- Ischemic heart disease
- Joubert syndrome
- Lafora progressive myoclonus epilepsy
- Leber congenital amaurosis type V
- Leigh syndrome
- ligneous conjunctivitis
- lung cancer
- **maple syrup urine disease**
- melanoma
- methylmalonic academia
- multiple epiphyseal dysplasia
- **multiple sclerosis**
- narcolepsy
- neural tube defects
Chromosome 6: disease associations

Over 100 major disease associations recognized so far...

- nephritis
- neuroblastoma
- non-ketotic hyperglycinemia
- nonsyndromic deafness
- oculodentodigital dysplasia
- otospondylomegaepiphyseal dysplasia
- palmoplantar keratoderma
- Parkinson disease
- Pemphigus vulgaris
- pituitary adenoma
- plasminogen deficiency
- PLO/sclerosing leukoencephalopathy
- polycystic kidney disease
- polymyalgia rheumatica

- polypoidal choroidal vasculopathy
- POEMS syndrome
- pontocerebellar hypoplasia
- porphyria
- porphyria cutanea tarda
- premature ovarian failure
- primary ciliary dykinesia
- prostate cancer
- proxisome biogenesis disorders
- psoriasis
- Refsum disease
- restless legs syndrome
- retinal neovascularization
- retinitis pigmentosa
Chromosome 6: disease associations

Over 100 major disease associations recognized so far..

- rheumatoid arthritis
- rhizomelic chondrodysplasia punctata
- schizophrenia
- Schmid type metaphyseal chondrodysplasia
- sialic acid storage disease
- sialidosis
- specific language impairment
- Spinocerebellar ataxia
- spondylometaphyseal dysplasia
- spinocerebellar ataxia
- spontaneous and recurrent abortion
- Stargardt macular degeneration
- Stickler syndrome
- succinic semialdehyde dehydrogenase deficiency
- sudden infant death syndrome
- systemic lupus erythematosus
- trichothiodystrophy
- Tourette syndrome
- tumor angiogenesis
- viral resistance and responsiveness
- vitelliform macular dystrophy
- Wegener granulomatosis
- Weissenbacher-Zweymuller syndrome
- xeroderma pigmentosum
- X-linked sideroblastic anemia
- Zellweger syndrome
Chromosome 6: disease associations

Over 100 major disease associations recognized so far.

Malignancies
- Lymph node metastasis in gastric cancer
- Gall bladder cancer
- Breast cancer in Russia
- Skin cancer
- Melanoma
- Thyroid cancer
- Germ-cell testis tumors
- Burkitt's lymphoma
- Cervical cancer in HPV-16-positive patients
- Protective effect from renal cell carcinoma

Leukemias
- Adult acute myeloblastic leukemia
- Childhood acute lymphoblastic leukemia
- Childhood acute lymphoblastic leukemia
- Chronic myeloid leukemia
- Chronic lymphoid leukemia
- Large granular lymphocyte leukemia with arthritis
Chromosome 6: structure & organization

MHC region: 6p21.3

Fig 3.20 © 2001 Garland Science

Fig 3.21 © 2001 Garland Science
Chromosome 6: alloimmunity

Transplantation
Chromosome 6: autoimmunity

Rheumatoid disease
Chromosome 6: uncertain etiology

Schizophrenia and MS

Early and Late Gray Matter Deficits in Schizophrenia

EARLIEST DEFICIT

5 YEARS LATER (SAME SUBJECTS)

STG, DLPFC

Thompson et al., 2001

Basic Science

- genomics, proteomics, biormarkars, metabolomics, neuroimaging, international cooperation

Advanced Analysis

- metabolic pathways, brain banks, databases, endophenotypes, candidate proteins, candidate genes

Schizophrenia Biomarkers

- high sensitivity and specificity, validated, standardized, reliable and reproducible, noninvasive, simple to perform, inexpensive

Clinical Application

- understanding pathogenesis, diagnosis, classifications, prognosis, clinical management, drug discovery and development
Chromosome 6: disease associations

Schizophrenia: gene associations

- NQO2: NAD(P)H dehydrogenase, quinone 2
- JARID2: jumonji, AT rich interactive domain 2
- ATXN1: ataxin 1
- SIRT5: sirtuin (silent mating type information regulation 2 homolog) 5
- DTNBPI: dystrobin binding protein 1
- MOG: myelin oligodendrocyte glycoprotein
- GABBR1: gamma-aminobutyric acid (GABA) B receptor, 1
- BAK1: BCL2-antagonist/killer 1
- C4A: complement component 4A (Rodgers blood group)
- C4B: complement component 4B (Childo blood group)
- DDR1: discoidin domain receptor tyrosine kinase 1
- ATF6B: activating transcription factor 6 beta
- GRM4: glutamate receptor, metabotropic 4
- LTA: lymphotoxin alpha (TNF superfamily, member 1)
- MICB: MHC class I polypeptide-related sequence B
- NOTCH4: Notch homolog 4 (Drosophila)
- TNF: tumor necrosis factor (TNF superfamily, member 2)
- TNXB: tenasin XB
- DAAM2: dishevelled associated activator of morphogenesis 2
- SLC25A27: solute carrier family 25, member 27
- CNR1: cannabinoid receptor 1 (brain)
- GRIK2: glutamate receptor, ionotrophic, kainate 2
- FABP7: fatty acid binding protein 7, brain
- TAAR6: trace amine associated receptor 6
- AHII: Abelson helper integration site 1
- SOD2: superoxide dismutase 2, mitochondrial
- TCP1: t-complex 1
- TBP: TATA box binding protein

Chromosome 6: disease associations

- 6p25.2
- 6p24.3
- 6p22.3
- 6p21.3
- 6p12.1
- 6q12
- 6q14.3
- 6q16.3
- 6q22.3
- 6q22.33
- 6q23.2
- 6q24.1
- 6q24.3
- 6q25.2
- 6q26

- 4835
- 3720
- 6310
- 23408
- 84062
- 4340
- 2550
- 578
- 720
- 721
- 780
- 1388
- 2914
- 4049
- 4277
- 4855
- 7124
- 7148
- 23500
- 9481
- 1268
- 2898
- 2173
- 319100
- 54806
- 6648
- 6950
- 6908
- 6p24-p23
- 6p21.3
- 6p21.2
- 6p12.3
- 6q16.1
- 6q22.1
- 6q22.33
- 6q23.2
- 6q24.1
- 6q24.3
- 6q25.2
- 6q26

Pr. Dermot Kelleher, 2010
Recent disease associations

Dementia Revealed: Novel Chromosome 6 Locus for Late-Onset Alzheimer Disease Provides Genetic Evidence for Folate-Pathway Abnormalities

Genetics of Type 1A Diabetes

Somatic mutations of the Parkinson's disease–associated gene PARK2 in glioblastoma and other human malignancies.
Et al. Nature Genetics, Volume: 42, 77–82, 2010
Examples of key diseases in Canada

Rheumatoid disease: Prevalence almost one quarter million. Relapsing progressing inflammatory joint disease with deformity and incapacitation. Management improving, but restoration of specific tolerance is the ultimate goal. Economic burden very high.

Juvenile Diabetes: Prevalence 1% of population. Progressive blindness, renal failure, vascular damage and amputations. Life reduced by at least 15 years. Management improving but inadequate, no cure. Economic burden estimated almost $2 billion per year.

Alzheimer’s Disease: Prevalence over half a million and increasing. Most important form of dementia (65%). No effective management, no cure. Profound societal and economic burden estimated at $15 billion per year.

Multiple sclerosis: Prevalence 75,000. Canada is a high-risk region of the world. Progressive demyelinating disease leading to paralysis and immobility. No effective management or cure. Profound societal and economic burden estimated at $1 billion.
Chromosome 6: project plan

Long-term, HPP-linked Goals:

• Confirm expression of all protein-coding genes (~1132), including tissue distribution

• Identify archetypical peptides of isoforms and for modifications

• Contribute spectra to spectral libraries

• Identify all splice variants, modifications: phospho and glyco, N and C-termini

• Characterize binding partners: interactome (proteins, metabolites, nucleic acids, etc).

• Make tools & data available

Short-term Goals: 3-year plan

• Start with short arm (6p)

• confirm expression

• confirm splice variants, modifications & binding partners

• focus on gene families/groups of particular interest
Chromosome 6: project plan

Histone Cluster
- Obvious biological relevance:
 - Modifications of histone tails
 - Tie in with current epigenetic efforts
- Driving questions:
 - When & where are the marks laid down?
 - What is the connectivity between marks?
- Economic opportunities:
 - Novel diagnostics
 - MRM methodology

MHC Cluster
- Obvious biological relevance:
 - Antigen presentation, regulation
 - Immunity, infection, transplantation
- Driving questions:
 - What are the peptide repertoires?
 - How do the relate to disease?
- Economic opportunities:
 - T / B cell tolerance
 - Vaccines, therapeutics

Other Cluster
- Obvious biological relevance:
 - What are the other genes / proteins
 - Are they expressed
- Driving questions:
 - What are their interactions?
 - What are their functions?
- Economic opportunities:
 - To be determined...

Start Year 1 Year 2 Year 3 Year 4 Year 5 Year 6
Chromosome 6: project plan

Informatics
- Before: Define what we know, and don’t know
- During: establish a repository to collect data from project participants.
- Do not re-invent the wheel
- work with UniProt (or HPRD) to make information available
- tissue distribution (or a stronger statement that a protein may not exist)
- SRM transitions (also into Skyline & SRMAAtlas)
- splice variants & PTMs already handled

Confirming expression
- Avoid brute force approach
- Make use of plentiful microarray data to target high probability tissues
 - Clinician partnerships
 - Some deep sequencing
- SRMs: faster, cheaper, more sensitive, more applicable

Splice variants
- What evidence exists?
 - EST/cDNA libraries
 - PeptideAtlas, GPM, etc.
- Add in data from expression confirmation studies
 - no new deep sequencing
- Design SRMs to cover all important predicted variants of families of interest
Defining HPP standards

- As a leader of the Human Proteome Project, Canada will define & shape the quality and standards for the international community.

- The size and medical and societal importance of chromosome 6 is commensurate with Canada’s leading role in proteomics.

- Goal: have all countries measure expression (by SRM) in same tissue samples – will need a bank spanning tissues & populations.

- Goal: minimum data quality requirements
 - e.g., S/N & specificity for SRM detection
 - e.g., FDR or % coverage for MuDPIT
 - e.g., 99% confidence for specific PTM sites.
Chromosome 6: collaborators

<table>
<thead>
<tr>
<th>National</th>
<th>International</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. Overall, UBC</td>
<td>G. Nepom, USA</td>
</tr>
<tr>
<td>L. Foster, UBC</td>
<td>F. Claas, Netherlands</td>
</tr>
<tr>
<td>D. Figeys, UO</td>
<td>G. Opelz, Germany</td>
</tr>
<tr>
<td>K. Siminovich, UT</td>
<td>C. Seusal, Germany</td>
</tr>
<tr>
<td>K. Tinckam, UT</td>
<td>P. Dyer, UK</td>
</tr>
<tr>
<td>P. Campbell, UA</td>
<td>F. Christiansen, Australia</td>
</tr>
<tr>
<td>L. West, UA</td>
<td>R. Duquesnoy, USA</td>
</tr>
<tr>
<td>N. Berka, UC</td>
<td>H. Gebel, USA</td>
</tr>
<tr>
<td>P. Nickerson, UM</td>
<td>M. Leffel, USA</td>
</tr>
<tr>
<td>M. Barnett, UBC</td>
<td>E. Reid, USA</td>
</tr>
<tr>
<td>T. Nevill, UBC</td>
<td>A. Zachary, USA</td>
</tr>
<tr>
<td>M. Cantarovich, MU</td>
<td>M. Zeevi, USA</td>
</tr>
<tr>
<td>S. Chung, UBC</td>
<td>M. Gerbase-deLima, Brasil</td>
</tr>
<tr>
<td>E. Cole, UT</td>
<td></td>
</tr>
<tr>
<td>J. Tchervenkov, MU</td>
<td></td>
</tr>
<tr>
<td>G. Warnock, UBC</td>
<td></td>
</tr>
<tr>
<td>N. Reiner, UBC</td>
<td></td>
</tr>
<tr>
<td>E. Keystone, UT</td>
<td></td>
</tr>
<tr>
<td>A. Jevnikar, UWO</td>
<td></td>
</tr>
<tr>
<td>S. Keshavjee, UT</td>
<td></td>
</tr>
<tr>
<td>G. Levy, UT</td>
<td></td>
</tr>
<tr>
<td>Q. Madrenas, UWO</td>
<td></td>
</tr>
<tr>
<td>D. White, UWO</td>
<td></td>
</tr>
<tr>
<td>D. Thompson, UBC</td>
<td></td>
</tr>
<tr>
<td>B. Verchere, UBC</td>
<td></td>
</tr>
<tr>
<td>J. Shapiro, UA</td>
<td></td>
</tr>
<tr>
<td>B. McManus, UBC</td>
<td></td>
</tr>
<tr>
<td>R. McMaster, UBC</td>
<td></td>
</tr>
<tr>
<td>T. Feasby, UA</td>
<td></td>
</tr>
<tr>
<td>A. Traboulsee, UBC</td>
<td></td>
</tr>
<tr>
<td>J. Stoessl, UBC</td>
<td></td>
</tr>
<tr>
<td>L. Tibbles, UC</td>
<td></td>
</tr>
<tr>
<td>D. Grant, UT</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Organizations</td>
<td>Canadian Society of Transplantation</td>
</tr>
<tr>
<td></td>
<td>The Transplantation Society</td>
</tr>
</tbody>
</table>
Chromosome 6: partners

Preliminary list of clinical, academic and industrial partners

In affiliation with:
- University of British Columbia
- University of Victoria
- McGill University
- University of Calgary
- Faculty of Medicine & Dentistry, University of Alberta
- Simon Fraser University
- Ottawa Institute of Systems Biology
- University of Victoria-Genome BC
- Proteomics Centre
- USC/CHLA
- Microarray Core
- iCAPTURE Centre for Cardiovascular and Pulmonary Research
- PROOF Centre of Excellence
- Genome British Columbia
- Genome Canada
- Genome Québec
- Vancouver Coastal Health Research Institute
- Providence Health Care
- Novartis
- Astellas
- Roche
- AstraZeneca
- Janssen
- Affymetrix
- IDT

Networks of Centres of Excellence of Canada